Outline

• Introduction
 – JPM Centrifuge Product Material Properties
 – Sand Capping Rationale

• Field Trials
 – 2015 Overboard Event
 – 2016 Capping Trial
 – 2017 Winter Capping Trial

• Trial Observations

• Discussion
 – Trial Comparison
 – Centrifuge Deposit Densification

• Conclusions
Introduction – Canadian Natural Centrifuged Fine Tailings

• Centrifuge Product is placed into Jackpine Mine (JPM) Dedicated Disposal Area 1 (DDA1) as a component of fluid fine tailings management at JPM
 – One component of Canadian Natural’s Tailings Management Plan

• Centrifuge Product is typically:
 – 45% solids content
 – >90% fines

• Centrifuged material is deposited in DDA1 to create a deep deposit

• Centrifuge Deposit is investigated to characterize:
 – Deposit volume
 – Material properties (strength, solids, etc.)
 – Centrifuge Product and Thickened Tailings mix
 – Impact of dyke construction of sand on centrifuge deposit
 – Sand capping feasibility
Introduction – Sand Capping Rationale

• Sand capping goals include:
 1. Enhanced consolidation rates (additional load, release water management)
 2. Provide trafficability (allow access for additional cap placement or drain installation, etc)
 3. Provide a buffer between deposit and reclamation soils
 4. Aid in managing surface water and reclamation ground water
 5. Minimize acid mine or rock drainage by facilitating formation of water-capped deposits or end-pit lakes

• Canadian Natural identified hydraulic and mechanical sand capping as technical gaps to be addressed by operational opportunities:
 – Hydraulic capping of Centrifuge Deposit at JPM DDA1
 – Mechanical capping of Atmospheric Fines Drying (AFD) deep stack, and
 – 5m test cell capping

• Prior to full investigation of these situations, Canadian Natural capitalized on an unplanned overboard event in DDA1
JPM Site Overview

Centrifuge Plant

Centrifuge Deposit

Centrifuge Line 1/2

Centrifuge Line 3/4

Centrifuge Plant

DDA1
Capping Trials Overview

• 2015 Overboard event
 – Unplanned CST discharge onto/into Centrifuge Deposit
 – Post-event sampling indicated densification and strengthening of localized Centrifuge Deposit

• 2016 capping trial
 – CST discharged to NW corner of DDA1
 – significant mixing of CST into Centrifuge Deposit observed
 – mixing led to deposit strengthening

• 2017 winter capping trial
 – similar to 2016, but significantly larger CST volume
 – 0.5 m frozen ice/Centrifuge Deposit layer
 – larger CST volume led to larger-magnitude mixing and ‘localized’ capping of Centrifuge Deposit

<table>
<thead>
<tr>
<th>Event</th>
<th>Duration (hours)</th>
<th>CST Slurry Volume (m³)</th>
<th>Deposition Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 Oct. 24</td>
<td>6</td>
<td>45,000</td>
<td>CST overboarding onto centrifuge deposit</td>
</tr>
<tr>
<td>2016 Aug. 24-25</td>
<td>7</td>
<td>54,000</td>
<td>CST multi-port outfall trial onto centrifuge deposit</td>
</tr>
<tr>
<td>2017 part I Mar. 21-22</td>
<td>14</td>
<td>107,000</td>
<td>CST spoon outfall trial onto ice-covered centrifuge deposit</td>
</tr>
<tr>
<td>2017 part 2 Mar. 29</td>
<td>5</td>
<td>30,000</td>
<td>CST multi-port outfall trial onto ice-covered centrifuge deposit</td>
</tr>
</tbody>
</table>
Trial Sampling Overview

• All deposits sampled before and after capping events/trials
 – 2015: 2014 annual survey (pre) compared against 2015 annual survey (post)
 – 2016: 2015 annual survey (pre) compared against targeted post-trial sampling
 – 2017: 2016 survey compared against targeted post-trial sampling
2015 Overboard Event Representative Deposits

- Predominant behaviour: Involved displacement of Centrifuge Deposit by CST
- Key observations
 - Localized capping of Centrifuge Deposit by CST (high solids content, elevated fines content)
 - Localized occurrence of CST over densified Centrifuge Deposit/mixed Centrifuge Deposit/CST
2016 Capping Trial Representative Deposits

- Predominant behaviour: CST plunging and mixing with and displacing Centrifuge Deposit.
- Significant mixing zone above CST beach
 - mixing zone thickest near CST outfall, thinning basinward
 - mixed deposits stronger and denser than unmixed Centrifuge Deposit
- Numerical modeling indicated:
 - mixing patterns related to relative bulk density (CST vs. Centrifuge Deposit)
 - capping might be possible with denser Centrifuge Deposit (>65% solids)
2017 Winter Capping Trial Representative Deposits

• Predominant behaviour: Displacement of Centrifuge Deposit by CST
 – alternate layering of CST with densified/mixed Centrifuge Deposit
 – significantly deeper area in DDA1
 – no observed benefit from frozen layer

• Larger volume of CST (> 2x) led to wider CST distribution in DDA1
 – layering may reflect wider distribution of CST (periodic deposition)

• More widespread occurrence of densified/mixed Centrifuge Deposit
Deposit Comparison

• High-density CST streams generally displace Centrifuge Deposit via plunging and beach formation
 – sand mixing common at boundary between CST beach and Centrifuge Deposit
• Overall deposit geometry reflects local depth, CST volume, and outfall geometry
 – shallower basin → more advancement
 – larger CST volume → larger CST/mixed deposit
• ‘Localised’ capping occurs where local CST delivery is periodic
 – larger CST volume → larger beach → periodic delivery
 – CST/Centrifuge Deposit mixing zones capped by subsequent CST delivery
2017 Complex Capping Behaviour

• Larger CST volume & mixing area leads to more complex mixing/capping
 – alternate CST and quiescence lead to local mixing/strengthening before subsequent CST beach formation
• Resultant deposits show:
 – CST beach-like layers (high solids, low fines)
 – mixed layers (intermediate solids/fines)
 – densified Centrifuge Deposit layers (high fines & solids)
Summary

• No observed conventional ‘capping’ of Centrifuge Deposit with CST (widespread), localized capping did occur in 2017 event.

• ‘Conventional’ capping was not observed due to:
 – CST delivered too rapidly (7,700 tonnes/hr)
 – CST stream too dense (+/- 60%)
 – Centrifuge Deposit bulk density too low (40 – 50 % solids)

• Where CST/Centrifuge Deposit mixing occurred:
 – deposits were stronger and denser (higher solids)
 – mixed deposits often exceeded 10 kPa peak undrained shear strength, if CST sand dominated the mixture

• Mixing zone geometry was potentially related to
 – CST pour duration
 – Centrifuge Deposit initial strength
Summary

• Longer duration pours led to complex capping/mixing geometry
 – alternate layers of densified Centrifuge Deposit, mixed Centrifuge Deposit/CST, and CST beach occurred during longer pours
 – shorter-duration pours led to a simpler wedge-shaped mixing geometry

• Capping of Centrifuge Deposit should be possible via:
 – reduced density CST stream (either particle density, or solids content)
 – stronger Centrifuge Deposit deposit (e.g., dewatered), or
 – more careful, diffused management of CST onto the Centrifuge Deposit surface

• Mixed Centrifuge Deposit/CST deposits could potentially be more easily capped than pure Centrifuge Deposits
 – the 2017 long-duration pour showed that previously mixed deposits were capped by subsequent CST delivery
ACKNOWLEDGEMENTS

• Scott Martens, Canadian Natural
• Karsten Rudolf, Canadian Natural